Types of Covalent Bonds

- What are the symmetries?
- Where are the nodes?
- What are the relative energies?
- How S changes with R_{AB}?
- What are the Y(MO)?
Dihydrogen Molecule (H_2)

\[\hat{H}_{\text{H}_2} \sim \left(-\nabla_1^2 - \frac{1}{r_{1A}} \right) + \left(-\nabla_2^2 - \frac{1}{r_{2B}} \right) - \frac{1}{r_{1B}} - \frac{1}{r_{2A}} + \frac{1}{R_{AB}} \]

\[\hat{H}_{\text{H}_2} = \hat{H}_{\text{H}(1e)} + \hat{H}_{\text{H}(1e)} - \frac{1}{r_{1B}} - \frac{1}{r_{2A}} + \frac{1}{R_{AB}} + \frac{1}{r_{12}} \]

Can not be solved exactly \rightarrow Approximate

Place 2e with opp. spin in bonding orbital of H_2^+

\[\varphi_{b}^{1e} = \frac{1}{\sqrt{2(1+S)}} \left[1s_A + 1s_B \right] \]

Spatial part!

\[\varphi_{\text{H}_2}^{\text{MO}} = \frac{1}{2(1+S)} \left[1s_A (1) + 1s_B (1) \right] \left[1s_A (2) + 1s_B (2) \right] \]

\[\varphi_{\text{H}_2}^{\text{MO}} = \frac{1}{2(1+S)} \left[1s_A (1)1s_A (2) + 1s_B (1)1s_B (2) + 1s_A (1)1s_B (2) + 1s_B (1)1s_A (2) \right] \]

MOT overemphasizes ionic terms in a covalent bond! VBT better?
Dihydrogen Molecule: One more electron goes to bonding orbital

Bond strength increases: Bond order=1

Effective nuclear charge changes the absolute Energy levels and the orbitals!

Matching of energies of AO important for LCAO-MO
If energies are not close to each other, they would Not interact to form MOs.
Energies of H_2^+, H_2, He_2^+, He_2

Molecular properties of H_2^+, H_2, He_2^+, and He_2.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of electrons</th>
<th>Ground-state electron configuration</th>
<th>Bond order</th>
<th>Bond length/pm</th>
<th>Binding energy/ kJ·mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2^+</td>
<td>1</td>
<td>$(\sigma_g 1s)^1$</td>
<td>1/2</td>
<td>106</td>
<td>268</td>
</tr>
<tr>
<td>H_2</td>
<td>2</td>
<td>$(\sigma_g 1s)^2$</td>
<td>1</td>
<td>74</td>
<td>457</td>
</tr>
<tr>
<td>He_2^+</td>
<td>3</td>
<td>$(\sigma_g 1s)^2(\sigma_g 1s)^1$</td>
<td>1/2</td>
<td>108</td>
<td>241</td>
</tr>
<tr>
<td>He_2</td>
<td>4</td>
<td>$(\sigma_g 1s)^2(\sigma_g 1s)^2$</td>
<td>0</td>
<td>≈ 6000</td>
<td>$\ll 14$</td>
</tr>
</tbody>
</table>
Matching of AO energies for MO

Due to large difference in energy of 1s(H) and 1s(F), LCAO-MO for both 1S is not feasible in HF. Rather, 2Pz(F) and 1S(H) form a sigma bond.

Both symmetry and energy matching is required for MO.

Valence electrons are most important for bonding.

Due to large difference in energy of 1s(H) and 1s(F), LCAO-MO for both 1S is not feasible in HF. Rather, 2Pz(F) and 1S(H) form a sigma bond.
Electron Density Maps/Contours
MO Contours show electron density maps

H₂

Li₂: core 1s

Li₂: core 1s*

Li₂: Valence 2s

2s and 2s*

3s and 1p

1p*

Total

HOMO (e): Highest Occupied Molecular Orbital

Li₂: Total

LUMO: Lowest Unoccupied Molecular Orbital
Expected MO and Energies for Dinitrogen

Are these MO and correct energy level diagram for N_2?

There is a problem! Spectroscopy says NO!
Mixing of 2S and 2P orbital occur because of small energy gap between them. 2s and 2p electrons feel not so different effective nuclear charge.
Mixing of 2S and 2P orbital occur because of small energy gap between them. 2s and 2p electrons feels not so different effective nuclear charge.
s-p Mixing: B_2 magnetism confirms it!

Incorrect!

Boron is paramagnetic. This can only happen if the two electrons with parallel spin are in the p-orbitals → p-bonding energies lower than s^*?